The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295961 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. 2
 2, 4, 10, 19, 35, 61, 104, 175, 290, 477, 780, 1271, 2066, 3353, 5436, 8808, 14264, 23093, 37379, 60495, 97898, 158418, 256342, 414787, 671157, 1085973, 1757160, 2843164, 4600356, 7443553, 12043944, 19487533, 31531514, 51019085, 82550638, 133569763 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A295862 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..2000 Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. EXAMPLE a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) - 1 = 10 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, ...) MATHEMATICA a = 2; a = 4; b = 1; b = 3; b = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}];  (* A295961 *) CROSSREFS Cf. A001622, A000045, A295862. Sequence in context: A228705 A253772 A043330 * A219555 A263738 A011963 Adjacent sequences:  A295958 A295959 A295960 * A295962 A295963 A295964 KEYWORD nonn,easy AUTHOR Clark Kimberling, Dec 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 8 05:33 EDT 2020. Contains 335513 sequences. (Running on oeis4.)