login
A295960
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
4
1, 3, 8, 16, 30, 54, 93, 157, 261, 430, 704, 1148, 1868, 3033, 4919, 7971, 12910, 20902, 33834, 54759, 88617, 143401, 232044, 375472, 607544, 983046, 1590621, 2573699, 4164353, 6738086, 10902474, 17640596, 28543107, 46183741, 74726887, 120910668, 195637596
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
b(3) = 6 (least "new number")
a(2) = a(1) + a(0) + b(2) - 1 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, ...)
MATHEMATICA
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1;
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295960 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 08 2017
STATUS
approved