login
A295944
Expansion of e.g.f. 1/(1 - x/(1 - x^2/(2 - x^3/(3 - x^4/(4 - x^5/(5 - x^6/(6 - x^7/(7 - ...)))))))), a continued fraction.
2
1, 1, 2, 9, 48, 330, 2760, 26670, 295680, 3686760, 51080400, 778516200, 12944131200, 233156523600, 4522777459200, 94000269963600, 2083918752115200, 49086474041404800, 1224240044169542400, 32229413145084355200, 893129953569780326400, 25987602379142314310400, 792175050968260985625600
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 1.38558212161941692858602713469062337279193542118277136584639901149123656221... and c = 0.53969028910223464320214486945875671476165137860949073877514057198146... - Vaclav Kotesovec, Sep 24 2020
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^k, k, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 30 2017
STATUS
approved