login
Number of nX5 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1s.
1

%I #4 Nov 30 2017 06:23:25

%S 6,104,465,2976,29081,187960,1311947,10551008,75078015,542376658,

%T 4102072137,29938839387,218987934561,1625448060901,11941735079412,

%U 87729809567537,647502964091097,4765006142911640,35058385899691714

%N Number of nX5 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1s.

%C Column 5 of A295943.

%H R. H. Hardin, <a href="/A295940/b295940.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +13*a(n-2) +319*a(n-3) -175*a(n-4) -1851*a(n-5) -31605*a(n-6) +1708*a(n-7) +95258*a(n-8) +1389787*a(n-9) +193136*a(n-10) -2457958*a(n-11) -31083337*a(n-12) -5782030*a(n-13) +38758205*a(n-14) +392360843*a(n-15) +71016189*a(n-16) -412424553*a(n-17) -2953957781*a(n-18) -512920571*a(n-19) +2827173896*a(n-20) +13897556540*a(n-21) +2547421573*a(n-22) -11367233989*a(n-23) -43971928203*a(n-24) -9797208959*a(n-25) +27914033069*a(n-26) +98937019689*a(n-27) +25502307008*a(n-28) -40670649863*a(n-29) -158278191868*a(n-30) -45437946975*a(n-31) +24699867444*a(n-32) +176550432928*a(n-33) +59000546594*a(n-34) +17228595572*a(n-35) -133065518179*a(n-36) -52559146389*a(n-37) -41755835960*a(n-38) +62938039174*a(n-39) +28128968718*a(n-40) +30166031378*a(n-41) -15831328230*a(n-42) -7734405830*a(n-43) -9846514840*a(n-44) +1183767800*a(n-45) +865613168*a(n-46) +999443216*a(n-47) +163616384*a(n-48) -28295296*a(n-49) +135998592*a(n-50) -32099328*a(n-51) +1754112*a(n-52) -14525440*a(n-53) +5396480*a(n-54) -372736*a(n-55)

%e Some solutions for n=6

%e ..0..0..0..1..1. .0..1..0..0..0. .0..0..1..1..0. .0..0..1..1..0

%e ..0..1..0..0..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..0..0

%e ..0..0..1..1..1. .0..0..0..0..1. .0..1..0..0..0. .0..0..0..0..0

%e ..0..0..1..0..0. .1..0..1..0..0. .0..1..1..0..0. .1..1..0..0..0

%e ..1..1..0..0..0. .1..0..1..0..1. .0..1..0..0..1. .0..0..0..0..0

%e ..0..0..1..0..0. .0..0..0..0..1. .0..1..0..0..1. .0..1..1..0..0

%Y Cf. A295943.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 30 2017