login
A295922
Number of (not necessarily maximal) cliques in the n-halved cube graph.
0
2, 4, 16, 81, 393, 1777, 7633, 31745, 129537, 523009, 2099969, 8409089, 33634305, 134475777, 537628673, 2149580801, 8595505153, 34374090753, 137475063809, 549844942849, 2199239786497, 8796612067329, 35185602068481, 140740374036481, 562956664307713
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Halved Cube Graph
Index entries for linear recurrences with constant coefficients, signature (13, -68, 184, -272, 208, -64).
FORMULA
a(n) = (24*(2 + 4^n) + 2^n*n*((n - 9)*n - 16))/48.
a(n) = 13*a(n-1) - 68*a(n-2) + 184*a(n-3) - 272*a(n-4) + 208*a(n-5) - 64*a(n-6).
G.f.: x (2 - 22*x + 100*x^2 - 223*x^3 + 236*x^4 - 96*x^5)/((-1 + 2*x)^4*(1 - 5*x + 4*x^2)).
MATHEMATICA
Table[(24 (2 + 4^n) + 2^n n ((n - 9) n - 16))/48, {n, 20}]
LinearRecurrence[{13, -68, 184, -272, 208, -64}, {2, 4, 16, 81, 393, 1777}, 20]
CoefficientList[Series[(2 - 22 x + 100 x^2 - 223 x^3 + 236 x^4 - 96 x^5)/((-1 + 2 x)^4 (1 - 5 x + 4 x^2)), {x, 0, 20}], x]
PROG
(PARI) a(n)=(24*4^n+2^n*n*(n*(n-9)-16))/48+1 \\ Charles R Greathouse IV, Nov 30 2017
CROSSREFS
Sequence in context: A213010 A000831 A000090 * A300100 A212432 A351287
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 30 2017
STATUS
approved