login
A295918
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.
7
2, 3, 3, 5, 6, 5, 8, 13, 13, 8, 13, 28, 39, 28, 13, 21, 60, 115, 115, 60, 21, 34, 129, 337, 467, 337, 129, 34, 55, 277, 993, 1880, 1880, 993, 277, 55, 89, 595, 2919, 7604, 10290, 7604, 2919, 595, 89, 144, 1278, 8587, 30721, 56955, 56955, 30721, 8587, 1278, 144, 233
OFFSET
1,1
COMMENTS
Table starts
..2....3.....5......8......13........21.........34..........55............89
..3....6....13.....28......60.......129........277.........595..........1278
..5...13....39....115.....337.......993.......2919........8587.........25257
..8...28...115....467....1880......7604......30721......124117........501512
.13...60...337...1880...10290.....56955.....314044.....1732883.......9562608
.21..129...993...7604...56955....431844....3261576....24650278.....186318117
.34..277..2919..30721..314044...3261576...33703065...348555744....3605337986
.55..595..8587.124117.1732883..24650278..348555744..4933593439...69844332764
.89.1278.25257.501512.9562608.186318117.3605337986.69844332764.1353357158724
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
k=3: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-4)
k=4: a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -3*a(n-4) -4*a(n-5) +a(n-6)
k=5: [order 38]
k=6: [order 92]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0. .0..1..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
..0..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0
..1..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
CROSSREFS
Column 1 is A000045(n+2).
Column 2 is A002478(n+1).
Sequence in context: A064464 A094585 A183322 * A296834 A242642 A178041
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2017
STATUS
approved