login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295891 a(n) = 1 if binary weights of n and A003961(n) are of the different parity, 0 otherwise; a(n) = A010060(n) XOR A010060(A003961(n)). 5
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

Index entries for sequences related to binary expansion of n

Index entries for characteristic functions

Index entries for sequences computed from indices in prime factorization

FORMULA

a(n) = A000120(n) + A000120(A003961(n)) mod 2.

a(n) = 1 - A295892(n).

a(2n) = a(n) XOR A295890(A003961(n)) = a(n) + A295890(A003961(n)) mod 2.

PROG

(PARI)

A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from Michel Marcus

A295891(n) = ((hammingweight(n)+hammingweight(A003961(n)))%2);

(Scheme) (define (A295891 n) (A000035 (+ (A000120 n) (A000120 (A003961 n)))))

CROSSREFS

Cf. A000035, A000120, A003961, A010060, A295890, A295892, A295893.

Sequence in context: A165263 A108737 A165221 * A093879 A117872 A291291

Adjacent sequences:  A295888 A295889 A295890 * A295892 A295893 A295894

KEYWORD

nonn

AUTHOR

Antti Karttunen, Nov 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 12:47 EDT 2019. Contains 328318 sequences. (Running on oeis4.)