The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295875 Let p = A295895(n) = parity of the binary weight of A005940(1+n). If A005940(1+n) is a square or twice a square (in A028982) then a(n) = 1 - p, otherwise a(n) = p. 5
 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS Antti Karttunen, Table of n, a(n) for n = 0..16383 FORMULA a(n) = A295895(n) + A295896(n) (mod 2). a(n) = A295894(n) + A000203(A005940(1+n)) mod 2. a(n) = A295297(A005940(1+n)). a(2n+1) = a(n). EXAMPLE The first six levels of the binary tree (compare also to the illustrations given at A005940, A295894 and A295895):                                0                                |                                0                 ............../ \..............                0                               0         ....../ \......                 ....../ \......        0               0               1               0       / \             / \             / \             / \      /   \           /   \           /   \           /   \     1     0         0     0         0     1         0     0    / \   / \       / \   / \       / \   / \       / \   / \   1   1 1   0     1   0 0   0     0   0 0   1     0   0 0   0 PROG (Scheme) (define (A295875 n) (A000035 (+ (A295895 n) (A295896 n)))) CROSSREFS Cf. A000035, A005940, A295297, A295894, A295895, A295896. Sequence in context: A011690 A011688 A144197 * A011676 A277147 A248747 Adjacent sequences:  A295872 A295873 A295874 * A295876 A295877 A295878 KEYWORD nonn AUTHOR Antti Karttunen, Dec 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 14:02 EDT 2020. Contains 336201 sequences. (Running on oeis4.)