This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295872 Decimal expansion of the first Ramanujan trigonometric constant (negated). 1
 7, 1, 7, 5, 1, 5, 0, 7, 9, 6, 4, 9, 9, 3, 9, 9, 3, 5, 1, 2, 0, 9, 5, 0, 5, 5, 9, 1, 7, 7, 9, 8, 6, 1, 1, 2, 1, 0, 8, 4, 5, 7, 6, 0, 1, 1, 5, 5, 2, 5, 0, 5, 7, 2, 1, 8, 3, 3, 0, 2, 8, 3, 0, 0, 2, 7, 9, 8, 1, 4, 6, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS According to the famous Ramanujan identity, the constant r_1 has a representation: r_1 = Sum_{i = 1..3} (cos(2^i*Pi/7))^(1/3) (see formula). This identity was submitted in 1914 by Ramanujan as a problem (cf. [Berndt, Y. S. Choi, S. Y. Kang]). For proof, see first [V. Shevelev]. REFERENCES B. Bajorska-Harapinska, M. Pleszczynski, D. Slota and R. Witula, A few properties of Ramanujan cubic polynomials and Ramanujan cubic polynomials of the second kind, in book: Selected Problems on Experimental Mathematics, Gliwice 2017, pp. 181-200. B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc. in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q524, JIMS VI, 1914). S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957. LINKS B. C. Berndt, H. H. Chan, L. C. Zhang, Radicals and units in Ramanujan's work, Acta Arith., 87 (1988), 145-158. B. C. Berndt, S. Bhargava, Ramanujan - for Lowbrows, Amer. Math. Monthly, 100, no. 7, 1993, 644-656. V. Shevelev, Three Ramanujan's formulas, Kvant 6 (1988), 52-55 in Russian. English translation: Kvant Selecta 14 (1999), 139-144. V. Shevelev, On Ramanujan cubic polynomials, arXiv:0711.3420 [math.AC], 2007; South East Asian J. Math. & Math. Sci. 8 (2009), 113-122. FORMULA r_1 = ((5 - 3*7^(1/3))/2)^(1/3). EXAMPLE r_1 =-0.7175150796499399351209505591779861121084576011552505721833028300279814650... MAPLE use RealDomain in solve(4*x^9 - 30*x^6 + 75*x^3 + 32 = 0) end use: evalf(%, 79); # Peter Luschny, Dec 13 2017 MATHEMATICA RealDigits[(-(5 - 3*7^(1/3))/2)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 13 2017 *) PROG (PARI) -((3*7^(1/3)-5)/2)^(1/3) \\ Michel Marcus, Dec 10 2017 CROSSREFS Sequence in context: A198580 A160798 A033953 * A010772 A199732 A293238 Adjacent sequences:  A295869 A295870 A295871 * A295873 A295874 A295875 KEYWORD cons,nonn AUTHOR Vladimir Shevelev, Dec 09 2017 EXTENSIONS More terms from Michel Marcus, Dec 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)