This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295868 Initial digit of the number of partitions of n. 0
 1, 1, 2, 3, 5, 7, 1, 1, 2, 3, 4, 5, 7, 1, 1, 1, 2, 2, 3, 4, 6, 7, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Theresa C. Anderson, Larry Rolen and Ruth Stoehr, Benford's Law for Coefficients of Modular Forms and Partition Functions, Proceedings of the American Mathematical Society, 139 (2011), pp. 1533-1541. Wikipedia, Benford's law FORMULA a(n) = A000030(A000041(n)). MATHEMATICA (* The first one hundred terms of the sequence *) Join[{1}, First[IntegerDigits[PartitionsP[#]]] & /@ Range[99]] f[n_] := Block[{p = PartitionsP@ n}, Floor[p/10^Floor@ Log10@ p]]; Array[f, 105, 0] (* Robert G. Wilson v, Feb 18 2018 *) PROG (PARI) a(n) = digits(numbpart(n))[1]; \\ Michel Marcus, Feb 16 2018 CROSSREFS Cf. A000030, A000041, A178743. Sequence in context: A077648 A033308 A134690 * A228355 A065859 A258062 Adjacent sequences:  A295865 A295866 A295867 * A295869 A295870 A295871 KEYWORD nonn,base AUTHOR José Hernández, Feb 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 21:15 EDT 2019. Contains 327282 sequences. (Running on oeis4.)