login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295862 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. 32
1, 3, 9, 18, 34, 60, 104, 175, 291, 479, 784, 1278, 2078, 3373, 5470, 8863, 14354, 23239, 37616, 60879, 98520, 159425, 257972, 417425, 675426, 1092881, 1768338, 2861251, 4629622, 7490908, 12120566, 19611511, 31732115, 51343665, 83075820, 134419526, 217495388 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.  a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).  Following is a guide to related sequences:

*****

Complementary equation: a(n) = a(n-1) + a(n-2) + b(n); initial values (a(0), a(1); b(0), b(1), b(2)):

A295862:  (1,3; 2,4,5)

A295947:  (2,4; 1,3,5)

A295948:  (3,4; 1,2,5)

A295949:  (1,2; 3,4,5)

A295950:  (1,4; 2,3,5)

A295951:  (2,3; 1,4,5)

A295952:  (1,5; 2,3,4)

Complementary equation: a(n) = a(n-1) + a(n-2) + b(n) + 1; initial values (a(0), a(1); b(0), b(1), b(2)):

A295953:  (1,3; 2,4,5)

A295954:  (2,4; 1,3,5)

A295955:  (3,4; 1,2,5)

A295956:  (1,2; 3,4,5)

A295957:  (1,4; 2,3,5)

A295958:  (2,3; 1,4,5)

A295959:  (1,5; 2,3,4)

Complementary equation: a(n) = a(n-1) + a(n-2) + b(n) - 1; initial values (a(0), a(1); b(0), b(1), b(2)):

A295860:  (1,3; 2,4,5)

A295961:  (2,4; 1,3,5)

A295962:  (3,4; 1,2,5)

A295963:  (1,2; 3,4,5)

A295964:  (1,4; 2,3,5)

A295965:  (2,3; 1,4,5)

A295966:  (1,5; 2,3,4)

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..3000

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

FORMULA

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2) + f(n-2)*b(3) + ... + f(2)*b(n-1) + f(1)*b(n), where f(n) = A000045(n), the n-th Fibonacci number.

EXAMPLE

a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, so that

b(3) = 6 (least "new number");

a(2) = a(1) + a(0) + b(2) = 9;

Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...)

MATHEMATICA

a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;

a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];

j = 1; While[j < 6, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];

Table[a[n], {n, 0, k}]  (*A295862*)

Table[b[n], {n, 0, 20}] (*complement*)

CROSSREFS

Cf. A001622, A000045, A295947.

Sequence in context: A256524 A210970 A293406 * A246695 A132920 A127645

Adjacent sequences:  A295859 A295860 A295861 * A295863 A295864 A295865

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Dec 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 04:57 EDT 2019. Contains 328145 sequences. (Running on oeis4.)