This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295859 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = 0, a(2) = 1, a(3) = 1. 2
 -2, 0, 1, 1, 8, 9, 29, 38, 91, 129, 268, 397, 761, 1158, 2111, 3269, 5764, 9033, 15565, 24598, 41699, 66297, 111068, 177365, 294577, 471942, 778807, 1250749, 2054132, 3304881, 5408165, 8713046, 14219515, 22932561, 37348684, 60281245, 98023145, 158304390 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth-rate of the Fibonacci numbers (A000045). LINKS Clark Kimberling, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -2) FORMULA a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -2, a(1) = 0, a(2) = 1, a(3) = 1. G.f.: (-2 + 2 x + 7 x^2 - 4 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). MATHEMATICA LinearRecurrence[{1, 3, -2, -2}, {-2, 0, 1, 1}, 100] CROSSREFS Cf. A001622, A000045, A295860. Sequence in context: A085496 A228748 A225094 * A180160 A101661 A322989 Adjacent sequences:  A295856 A295857 A295858 * A295860 A295861 A295862 KEYWORD easy,sign AUTHOR Clark Kimberling, Jan 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 02:04 EDT 2019. Contains 328106 sequences. (Running on oeis4.)