login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295851 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = -1, a(2) = 2, a(3) = 1. 1
0, -1, 2, 1, 9, 10, 31, 41, 96, 137, 281, 418, 795, 1213, 2200, 3413, 5997, 9410, 16175, 25585, 43296, 68881, 115249, 184130, 305523, 489653, 807464, 1297117, 2129157, 3426274, 5604583, 9030857, 14733744, 23764601, 38694953, 62459554, 101547723, 164007277 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth-rate of the Fibonacci numbers (A000045).

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..2000

Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -2)

FORMULA

a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = -1, a(2) = 2, a(3) = 1.

G.f.: (-x + 3 x^2 + 2 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).

MATHEMATICA

LinearRecurrence[{1, 3, -2, -2}, {0, -1, 2, 1}, 100]

CROSSREFS

Cf. A001622, A000045.

Sequence in context: A059604 A048160 A305178 * A192324 A063579 A240085

Adjacent sequences:  A295848 A295849 A295850 * A295852 A295853 A295854

KEYWORD

easy,sign

AUTHOR

Clark Kimberling, Dec 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 12:37 EDT 2019. Contains 327237 sequences. (Running on oeis4.)