login
A295838
Largest value corresponding to a string of n printable ASCII characters.
1
0, 126, 32382, 8289918, 2122219134, 543288098430, 139081753198206, 35604928818740862, 9114861777597660798, 2333404615065001164414, 597351581456640298090110
OFFSET
0,2
COMMENTS
The n-th term of this sequence is the result of forming an ASCII (American Standard Code for Information Exchange) text string of n characters using the (printable) character with the largest binary value and then converting the binary value of the string to base 10. a(n) is therefore a measure of the largest possible size of an ASCII string with n printable characters. This sequence uses standard 7-bit ASCII; A175824 is the same sequence using 8-bit Extended ASCII.
Conjecture: For every a(n) there exists a sequence of primes (p(1), p(2), p(3), ...) such that for each term a(n) there exists a set of primes that when added to the term result in another prime. For example, a(2)=126 and 126 + {5,11,13,23,37,41,47,...} all are primes.
Corollary 1: If it is the case that the size of the set of prime numbers is countably infinite, then the cardinality of the sequence that contains the sequence of primes p(1), p(2), ... that produce a new prime for every a(n) is uncountably infinite ... [ (a(1)+p(1), a(1)+p(2), a(1)+p(3), ...), (a(2)+p(1)', a(2)+p(2)', a(2)+p(3)'), ...)
FORMULA
a(n) = (42/85)*(256^n - 1).
From Iain Fox, Nov 28 2017: (Start)
G.f.: 126*x/((1-256*x)*(1-x)).
E.g.f.: 42/85*(e^(256*x)-e^x).
a(n) = 42/85 * A175824(n).
(End)
For n > 0, a(n) = 256*a(n-1) + 126. - Jon E. Schoenfield, Nov 29 2017
For n > 1, a(n) = 257*a(n-1) - 256*a(n-2). - Iain Fox, Jan 02 2018
EXAMPLE
The lexicographically last 2-character printable ASCII string is "~~", which is 7E7E in hexadecimal or 32382 in decimal, thus a(2) = 32382.
MAPLE
A295838:=n->(42/85)*(256^n - 1): seq(A295838(n), n=0..20); # Wesley Ivan Hurt, Nov 29 2017
MATHEMATICA
Array[(42/85) (256^# - 1) &, 11, 0] (* Michael De Vlieger, Dec 11 2017 *)
CoefficientList[Series[126 x/((1 - 256 x) (1 - x)), {x, 0, 10}], x] (* Michael De Vlieger, Dec 11 2017 *)
PROG
(PARI) a(n) = 42/85*(256^n-1) \\ Iain Fox, Nov 28 2017
(PARI) first(n) = Vec(126*x/((1-256*x)*(1-x)) + O(x^n), -n) \\ Iain Fox, Nov 28 2017
(Magma) [(42/85)*(256^n - 1) : n in [0..20]]; // Wesley Ivan Hurt, Nov 29 2017
CROSSREFS
Cf. A175824.
Sequence in context: A121004 A027491 A289326 * A165028 A364402 A295816
KEYWORD
nonn,easy,base
AUTHOR
Abilene Sukin, Nov 28 2017
STATUS
approved