login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k. 4
1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..45.

FORMULA

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).

a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

MATHEMATICA

nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A006950, A113415, A156616, A224364, A263140, A273225, A273226, A274621, A295831.

Sequence in context: A286311 A256057 A055606 * A147879 A147880 A276527

Adjacent sequences:  A295829 A295830 A295831 * A295833 A295834 A295835

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 21:47 EST 2020. Contains 331066 sequences. (Running on oeis4.)