login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295831 Expansion of Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k. 4
1, 1, 2, 4, 6, 11, 19, 30, 47, 76, 118, 181, 277, 417, 624, 929, 1367, 2001, 2913, 4210, 6056, 8665, 12328, 17466, 24640, 34600, 48395, 67442, 93625, 129520, 178588, 245429, 336252, 459324, 625613, 849762, 1151150, 1555378, 2096332, 2818630, 3780903, 5060240, 6757633, 9005106, 11975265 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..44.

FORMULA

G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.

G.f.: exp(Sum_{k>=1} x^k*(1 - (-1)^k*x^k)/(k*(1 - x^(2*k))^2)).

a(n) ~ exp(3*(7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (12 * (7*Zeta(3))^(1/3)) - Pi^4 / (3024*Zeta(3)) - 1/24) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(11/8) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

MATHEMATICA

nmax = 44; CoefficientList[Series[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 44; CoefficientList[Series[Exp[Sum[x^k (1 - (-1)^k x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

CROSSREFS

Cf. A001935, A001936, A001937, A026007, A035528, A093160, A113415, A156616, A284474, A292037, A295832.

Sequence in context: A005684 A260697 A018167 * A140443 A224957 A115992

Adjacent sequences:  A295828 A295829 A295830 * A295832 A295833 A295834

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 13:47 EST 2020. Contains 331009 sequences. (Running on oeis4.)