login
A295827
a(n) = least odd k > 1 such that n and n*k have the same Hamming weight, or -1 if no such k exists.
2
-1, -1, 3, -1, 13, 3, 3, -1, 57, 13, 35, 3, 21, 3, 3, -1, 241, 57, 7, 13, 13, 35, 39, 3, 169, 21, 5, 3, 21, 3, 3, -1, 993, 241, 11, 57, 7, 7, 5, 13, 3197, 13, 9, 35, 3, 39, 13, 3, 21, 169, 3, 21, 39, 5, 47, 3, 27, 21, 5, 3, 13, 3, 3, -1, 4033, 993, 491, 241
OFFSET
1,3
COMMENTS
The Hamming weight of a number n is given by A000120(n).
Apparently, a(n) = -1 iff n = 2^k for some k >= 0.
Apparently, a(2^n + 1) = A020515(n) for any n > 1.
a(2^n - 1) = 3 for any n > 1.
a(n) = 3 iff n = A077459(k) for some k > 1.
This sequence has similarities with A292849: here we want A000120(n*a(n)) = A000120(n), there we want A000120(n*a(n)) = A000120(a(n)).
For any n > 0, if a(n) > 0 then A292849(a(n)) <= n.
FORMULA
a(2*n) = a(n) for any n > 0.
EXAMPLE
The first terms, alongside the binary representations of n and of n*a(n), are:
n a(n) bin(n) bin(n*a(n))
-- ---- ------ -----------
1 -1 1 -1
2 -1 10 -10
3 3 11 1001
4 -1 100 -100
5 13 101 1000001
6 3 110 10010
7 3 111 10101
8 -1 1000 -1000
9 57 1001 1000000001
10 13 1010 10000010
11 35 1011 110000001
12 3 1100 100100
13 21 1101 100010001
14 3 1110 101010
15 3 1111 101101
16 -1 10000 -10000
17 241 10001 1000000000001
18 57 10010 10000000010
19 7 10011 10000101
20 13 10100 100000100
MAPLE
f:= proc(n) local k, w;
if n = 2^padic:-ordp(n, 2) then return -1 fi;
w:= convert(convert(n, base, 2), `+`);
for k from 3 by 2 do
if convert(convert(n*k, base, 2), `+`)=w then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Nov 28 2017
MATHEMATICA
Table[SelectFirst[Range[3, 10^4 + 1, 2], SameQ @@ Map[DigitCount[#, 2, 1] &, {n, n #}] &] /. m_ /; MissingQ@ m -> -1, {n, 68}] (* Michael De Vlieger, Nov 28 2017 *)
PROG
(PARI) A057168(n)=n+bitxor(n, n+n=bitand(n, -n))\n\4+n \\ after M. F. Hasler at A057168
a(n) = n\=2^valuation(n, 2); if (n==1, -1, my(w=(n-1)/2); while(1, w=A057168(w); if((2*w+1)%n==0, return((2*w+1)/n))))
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Nov 28 2017
STATUS
approved