OFFSET
0,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..440
FORMULA
E.g.f.: exp(Sum_{k>=1} A048272(k)*x^k).
E.g.f.: exp(x*f'(x)), where f(x) = log(Product_{k>=1} (1 + x^k)^(1/k)).
a(n) ~ exp(2*sqrt(n*log(2)) - 1/4 - n) * n^(n - 1/4) * log(2)^(1/4) / sqrt(2). - Vaclav Kotesovec, Sep 07 2018
MAPLE
a:=series(mul(exp(x^k/(1+x^k)), k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 27 2017
STATUS
approved