login
A295689
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 2, a(1) = 0, a(2) = 2, a(3) = 1
1
2, 0, 2, 1, 3, 5, 8, 12, 20, 33, 53, 85, 138, 224, 362, 585, 947, 1533, 2480, 4012, 6492, 10505, 16997, 27501, 44498, 72000, 116498, 188497, 304995, 493493, 798488, 1291980, 2090468, 3382449, 5472917, 8855365, 14328282, 23183648, 37511930, 60695577, 98207507
OFFSET
0,1
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 2, a(1) = 0, a(2) = 2, a(3) = 1.
G.f.: (-2 + 2 x - 2 x^2 + 3 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {2, 0, 2, 1}, 100]
CROSSREFS
Sequence in context: A197317 A035573 A361850 * A305804 A053470 A308202
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 29 2017
STATUS
approved