This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295672 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 1, a(3) = -2. 1
 1, 1, 1, -2, 0, 2, 1, -1, 1, 4, 4, 4, 9, 17, 25, 38, 64, 106, 169, 271, 441, 716, 1156, 1868, 3025, 4897, 7921, 12814, 20736, 33554, 54289, 87839, 142129, 229972, 372100, 602068, 974169, 1576241, 2550409, 4126646, 6677056, 10803706, 17480761, 28284463 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Lim_{n->inf} a(n)/a(n-1) = (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). LINKS Clark Kimberling, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 1) FORMULA a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 1, a(2) = 1, a(3) = -2. G.f.: (-1 + 4 x^3)/(-1 + x + x^3 + x^4). MATHEMATICA LinearRecurrence[{1, 0, 1, 1}, {1, 1, 1, -2}, 100] CROSSREFS Cf. A001622, A000045. Sequence in context: A302242 A236627 A116664 * A024161 A035156 A063883 Adjacent sequences:  A295669 A295670 A295671 * A295673 A295674 A295675 KEYWORD easy,sign AUTHOR Clark Kimberling, Nov 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:32 EDT 2019. Contains 321406 sequences. (Running on oeis4.)