login
A295619
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
3
1, 2, 3, 4, 7, 9, 16, 21, 37, 50, 87, 121, 208, 297, 505, 738, 1243, 1853, 3096, 4693, 7789, 11970, 19759, 30705, 50464, 79121, 129585, 204610, 334195, 530613, 864808, 1379037, 2243845, 3590114, 5833959, 9358537, 15192496, 24419961, 39612457, 63770274
OFFSET
0,2
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 2, a(2) = 3, a(3) = 4.
G.f.: (1 + x - 2 x^2 - 3 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {1, 2, 3, 4}, 50]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 25 2017
STATUS
approved