login
A295596
Numbers k such that Bernoulli number B_{k} has denominator 3404310.
1
84, 168, 16548, 26628, 29316, 38388, 43764, 47964, 53256, 61572, 69132, 71988, 72156, 73668, 87528, 96852, 103908, 109284, 121548, 123144, 124572, 137508, 139188, 142548, 144312, 144564, 146244, 147336, 156828, 163716, 167748, 172452, 174972, 185388, 188076, 190428
OFFSET
1,1
COMMENTS
3404310 = 2*3*5*7*13*29*43.
All terms are multiples of a(1) = 84.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 2346073.
LINKS
EXAMPLE
Bernoulli B_{84} is
-2024576195935290360231131160111731009989917391198090877281083932477/3404310 hence 84 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 3404310);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 29, 43}:
select(filter, [seq(i, i=1..10^5)]);
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved