login
A295576
a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.
3
0, 1, 1, 1, 17, 1, 98, 82, 273, 82, 979, 626, 2275, 707, 2674, 3108, 8772, 3027, 15333, 9044, 14994, 9669, 39974, 17668, 50085, 24310, 60597, 50470, 127687, 45604, 178312, 103496, 149908, 103496, 225302, 129750, 432345, 187017, 349830, 266088, 722666
OFFSET
1,5
COMMENTS
If p is an odd prime, a(p) = p*(p^2-1)*(3*p^2-7)/480. - Robert Israel, Dec 10 2017
LINKS
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
MAPLE
f:= n -> add(t^4, t = select(t->igcd(t, n)=1, [$1..n/2])):
map(f, [$1..100]); # Robert Israel, Dec 10 2017
MATHEMATICA
f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^4); Array[f, 41] (* Robert G. Wilson v, Dec 10 2017 *)
PROG
(PARI) a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^4); \\ Michel Marcus, Dec 10 2017
CROSSREFS
In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.
Sequence in context: A102292 A264439 A279363 * A376019 A223519 A139804
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2017
STATUS
approved