The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295511 The Schinzel-Sierpiński tree of fractions, read across levels. 4
 2, 2, 2, 3, 3, 2, 3, 7, 7, 5, 5, 7, 7, 3, 2, 5, 17, 13, 7, 11, 11, 5, 5, 11, 11, 7, 13, 17, 5, 2, 3, 11, 241, 193, 17, 29, 29, 13, 7, 17, 17, 11, 31, 43, 43, 13, 13, 43, 43, 31, 11, 17, 17, 7, 13, 29, 29, 17, 193, 241, 11, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A conjecture of Schinzel and Sierpiński asserts that every positive rational number r can be represented as a quotient of shifted primes such that r = (p-1)/(q-1). The function r -> [p, q] will be called the Schinzel-Sierpiński encoding of r if q is the smallest prime such that r = (p-1)/(q-1) for some prime p. In the case that no pair of such primes exists we set by convention p = q = 1. The Schinzel-Sierpiński tree of fractions is the Euclid tree A295515 with root 1 and fractions represented by the Schinzel-Sierpiński encoding. REFERENCES E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. LINKS N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363. Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7. P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216. P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71. Peter Luschny, The Schinzel-Sierpiński conjecture and the Calkin-Wilf tree. A. Malter, D. Schleicher, D. Zagier, New looks at old number theory, Amer. Math. Monthly, 120 (2013), 243-264. A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259. EXAMPLE The tree starts:                                         2/2                    2/3                                     3/2          3/7                  7/5                 5/7                   7/3    2/5       17/13     7/11        11/5     5/11       11/7     13/17        5/2 . The numerators of the terms written as an array (the denominators are given by reversion of the arrays): 1: 2 2: 2, 3 3: 3, 7, 5, 7 4: 2, 17, 7, 11, 5, 11, 13, 5 5: 3, 241, 17, 29, 7, 17, 31, 43, 13, 43, 11, 17, 13, 29, 193, 11 PROG (Sage) def EuclidTree(n): # with root 1     def DijkstraFusc(m):         a, b, k = 1, 0, m         while k > 0:             if k % 2 == 1: b += a             else: a += b             k = k >> 1         return b     DF = [DijkstraFusc(k) for k in (2^(n-1)..2^n)]     return [DF[j]/DF[j+1] for j in (0..2^(n-1)-1)] def SchinzelSierpinski(l):     a, b = l.numerator(), l.denominator()     p, q = 1, 2     while q < 1000000000: # search limit         r = a*(q - 1)         if b.divides(r):             p = r // b + 1             if is_prime(p): return p/q         q = next_prime(q)     print("Search limit reached for ", l); return 0 def SSETree(level):     return [SchinzelSierpinski(l) for l in EuclidTree(level)] # With the imperfection that Sage reduces 2/2 automatically to 1. for level in (1..6): print(SSETree(level)) CROSSREFS Cf. A002487, A294442, A295510, A295512, A295515. Sequence in context: A238969 A238956 A331415 * A116505 A110534 A194340 Adjacent sequences:  A295508 A295509 A295510 * A295512 A295513 A295514 KEYWORD nonn,tabf AUTHOR Peter Luschny, Nov 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 22:40 EST 2020. Contains 332312 sequences. (Running on oeis4.)