%I
%S 1,2,5,8,14,18,20,36,68,224,252,563,780,2430,3150,7919,11092,14020,
%T 14908,58032
%N Numbers k such that 3*10^k  23 is prime.
%C For k > 1, numbers such that the digit 2 followed by k2 occurrences of the digit 9 followed by the digits 77 is prime (see Example section).
%C a(21) > 2*10^5.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of nearrepdigitrelated numbers</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/primedifficulty.txt">Search for 29w77</a>
%e 2 is in this sequence because 3*10^2  23 = 277 is prime.
%e Initial terms and primes associated:
%e a(1) = 1, 7;
%e a(2) = 2, 277;
%e a(3) = 5, 299977;
%e a(4) = 8, 299999977;
%e a(5) = 14, 299999999999977; etc.
%t Select[Range[1, 100000], PrimeQ[3*10^#  23] &]
%o (PARI) isok(k) = isprime(3*10^k  23); \\ _Michel Marcus_, Nov 22 2017
%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K nonn,more,hard
%O 1,2
%A _Robert Price_, Nov 21 2017
