login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295382 Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x). 5
1, -1, -2, -2, 8, 88, 592, 3344, 14464, 2944, -1121536, -21603584, -317969408, -4202380288, -51322677248, -562045749248, -4751724347392, -3419742961664, 1260396818661376, 45221885372727296, 1218206507254153216, 29421299633821057024, 669044215287581769728, 14528992234596624498688 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..449

Eric Weisstein's World of Mathematics, Laguerre Polynomial

Wikipedia, Laguerre polynomials

Index entries for sequences related to Laguerre polynomials

FORMULA

E.g.f.: exp(-2*x/(1 - x))/(1 - x).

a(n) = n!*Laguerre(n,2).

a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.

a(n) = n!*A160623(n)/A160624(n).

MAPLE

a:=series(exp(-2*x/(1-x))/(1-x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

Table[n! LaguerreL[n, 2], {n, 0, 23}]

Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]

Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]

PROG

(PARI) x='x+O('x^30); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ G. C. Greubel, Feb 06 2018

(MAGMA) [Factorial(n)*(&+[(-1)^k*Binomial(n, k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018

CROSSREFS

Column k=2 of A295381.

Cf. A009940, A087912, A160623, A160624, A277423.

Sequence in context: A012659 A009448 A012410 * A123642 A007848 A326906

Adjacent sequences:  A295379 A295380 A295381 * A295383 A295384 A295385

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Nov 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 11:25 EDT 2020. Contains 335658 sequences. (Running on oeis4.)