OFFSET
0,3
COMMENTS
The corresponding numerators are given in A295336.
The recurrence is a(n) = b(n)*a(n-1) + a(n-2), n >= 0, with a(0) = 1, a(-1) = 0, (a(-2) = 1) with b(n) from the continued fraction b = {1,repeat(1, 6, 1, 2)}.
The g.f.s G_j(x) = Sum_{n>=0} a(4*n+j)*x^k, for j=1..4 satisfy (arguments are omitted): G_0 = 2*x*G_3 + 1 + x*G_2, G_1= G_0 + x*G_3, G_2 = 6*G_1 + G_0, G_3 = G_2 + G_1. After solving for the G_j(x), one finds for G(x) = Sum_{n>=0} a(n)*x^n = Sum_{j=1..4} x^j*G_j(x^4) the o.g.f. given in the formula section.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,30,0,0,0,-1).
FORMULA
G.f.: (1 + x - x^2)*(1 + 8*x^2 + x^4)/(1- 30*x^4 + x^8).
a(n) = 30*a(n-4) - a(n-8), n >= 8, with inputs a(0)..a(7).
MATHEMATICA
Denominator[Convergents[Sqrt[14]/2, 50]] (* Vaclav Kotesovec, Nov 29 2017 *)
CROSSREFS
KEYWORD
nonn,frac,cofr,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved