login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295320 Sum of the products of the smaller and larger parts of the partitions of n into two distinct parts with the larger part odd. 2
0, 0, 0, 3, 6, 5, 10, 22, 34, 30, 46, 73, 100, 91, 124, 172, 220, 204, 260, 335, 410, 385, 470, 578, 686, 650, 770, 917, 1064, 1015, 1176, 1368, 1560, 1496, 1704, 1947, 2190, 2109, 2370, 2670, 2970, 2870, 3190, 3553, 3916, 3795, 4180, 4612, 5044, 4900, 5356 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sum of the areas of the distinct rectangles with odd length and integer width such that L + W = n, W < L. For example, a(10) = 30; the rectangles are 1 X 9 and 3 X 7 (5 X 5 is not included since we have W < L), so 1*9 + 3*7 = 30.

Sum of the ordinates from the ordered pairs (n-k,n*k-k^2) corresponding to integer points along the right side of the parabola b_k = n*k-k^2 where n-k is an odd integer such that 0 < k < floor(n/2).

Sum of the areas of the trapezoids with bases n and n-2i and height i for odd values of n-i where i is in 0 <= i <= floor((n-1)/2). For a(n) the area formula for a trapezoid becomes (n+n-2i)*i/2 = (2n-2i)*i/2 = i*(n-i). For n=10, n-i is odd when i=1,3 so a(10) = 1*(10-1) + 3*(10-3) = 30. - Wesley Ivan Hurt, Mar 21 2018

Sum of the areas of the symmetric L-shaped polygons with long side n/2 and width i such that n-i is odd for i in 0 <= i <= floor((n-1)/2). The area of each polygon is given by i^2+2i(n/2-i) = i^2+ni-2i^2 = i(n-i). For n=8, 8-i is odd for i=1,3 so 1(8-1) + 3(8-3) = 7 + 15 = 22. - Wesley Ivan Hurt, Mar 26 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5000

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i) * ((n-i) mod 2).

Conjectures from Colin Barker, Nov 20 2017: (Start)

G.f.: x^4*(3+3*x-x^2+5*x^3+3*x^4+3*x^5-x^6+x^7) / ((1-x)^4*(1+x)^3*(1+x^2)^3).

a(n) = a(n-1) + 3*a(n-4) - 3*a(n-5) - 3*a(n-8) + 3*a(n-9) + a(n-12) - a(n-13) for n > 13.

(End)

a(n) = (1/384)*(-1)^(-(-1)^n/4)*((2-2*(-1)^n)*(-(-1)^((4*n+2-(-1)^n)/4)+6*(-1)^((6*n+1)/4)-(-1)^((2-(-1)^n)/4))+4*n*(12*(-1)^((-1)^n/4)*(-1)^n-6*n*(-1)^((2*n-1-2*(-1)^n)/4)+(-1)^((-1)^n/4)*(-4-3*n*(1+(-1)^n)+4*n^2))). - Wesley Ivan Hurt, Dec 03 2017

EXAMPLE

For n=8, the partitions into two distinct parts are 7 + 1, 6 + 2, and 5 + 3. Of these, 7 + 1 and 5 + 3 have the smaller part odd, so a(8) = 7*1 + 5*3 = 22. - Michael B. Porter, Dec 05 2017

MAPLE

A295320:=n->add(i*(n-i)*((n-i) mod 2), i=1..floor((n-1)/2)): seq(A295320(n), n=1..100);

MATHEMATICA

Table[Sum[i (n - i) Mod[n - i, 2], {i, Floor[(n - 1)/2]}], {n, 80}]

PROG

(PARI) a(n) = sum(i=1, (n-1)\2, i*(n-i)*((n-i) % 2)); \\ Michel Marcus, Mar 26 2018

CROSSREFS

Cf. A295321.

Sequence in context: A127780 A350661 A118413 * A093419 A160049 A096620

Adjacent sequences: A295317 A295318 A295319 * A295321 A295322 A295323

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Nov 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)