login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295287 Sum of the products of the smaller and larger parts of the partitions of n into two parts with the smaller part even. 7
0, 0, 0, 4, 6, 8, 10, 28, 34, 40, 46, 88, 100, 112, 124, 200, 220, 240, 260, 380, 410, 440, 470, 644, 686, 728, 770, 1008, 1064, 1120, 1176, 1488, 1560, 1632, 1704, 2100, 2190, 2280, 2370, 2860, 2970, 3080, 3190, 3784, 3916, 4048, 4180, 4888, 5044, 5200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sum of the areas of the distinct rectangles with integer length and even width such that L + W = n, W <= L. For example, a(8) = 28; the rectangles are 2 X 6 and 4 X 4, so 2*6 + 4*4 = 28.

Sum of the ordinates from the ordered pairs (k,n*k-k^2) corresponding to integer points along the left side of the parabola b_k = n*k-k^2 where k is an even integer such that 0 < k <= floor(n/2).

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{i=1..floor(n/2)} i * (n - i) * ((i+1) mod 2).

Conjectures from Colin Barker, Nov 20 2017: (Start)

G.f.: 2*x^4*(2 + x + x^2 + x^3 + 3*x^4) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^3).

a(n) = a(n-1) + 3*a(n-4) - 3*a(n-5) - 3*a(n-8) + 3*a(n-9) + a(n-12) - a(n-13) for n > 13.

(End)

Conjectures verified by Robert Israel, Dec 05 2017.

a(n) = (1/96)*(3*n^2*(1+(-1)^n)-16*n+4*n^3+3*I^n*(1+I)*(-1)^(-(-1)^n/4)*((1+2*n^2)*(-1)^n-1)/sqrt(2)) where I=sqrt(-1). - Wesley Ivan Hurt, Dec 02 2017

EXAMPLE

a(10) = 40; the partitions of 10 into two parts are (9,1), (8,2), (7,3), (6,4), (5,5). Two of these partitions have their smaller part even, namely (8,2) and (6,4). So, a(10) = 8*2 + 6*4 = 40.

MAPLE

A295287:=n->add(i*(n-i)*((i+1) mod 2), i=1..floor(n/2)): seq(A295287(n), n=1..100);

# Alternative:

for j from 0 to 3 do

  F[j]:= expand(simplify(eval(sum(2*i*(4*k+j-2*i), i=1..k)), {k=(n-j)/4}))

od:

seq(F[n mod 4], n=1..30); # Robert Israel, Dec 05 2017

MATHEMATICA

Table[Sum[i (n - i) Mod[i + 1, 2], {i, Floor[n/2]}], {n, 80}]

CROSSREFS

Cf. A295286.

Sequence in context: A294243 A298473 A054284 * A079254 A091178 A270448

Adjacent sequences:  A295284 A295285 A295286 * A295288 A295289 A295290

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Nov 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 17:54 EDT 2019. Contains 322310 sequences. (Running on oeis4.)