This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295286 Sum of the products of the smaller and larger parts of the partitions of n into two parts with the smaller part odd. 6
 0, 1, 2, 3, 4, 14, 18, 22, 26, 55, 64, 73, 82, 140, 156, 172, 188, 285, 310, 335, 360, 506, 542, 578, 614, 819, 868, 917, 966, 1240, 1304, 1368, 1432, 1785, 1866, 1947, 2028, 2470, 2570, 2670, 2770, 3311, 3432, 3553, 3674, 4324, 4468, 4612, 4756, 5525, 5694 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Sum of the areas of the distinct rectangles with integer length and odd width such that L + W = n, W <= L. For example, a(6) = 14; the rectangles are 1 X 5 and 3 X 3, so 5 + 9 = 14. Sum of the ordinates from the ordered pairs (k,n*k-k^2) corresponding to integer points along the left side of the parabola b_k = n*k-k^2 where k is an odd integer such that 0 < k <= floor(n/2). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = Sum_{i=1..floor(n/2)} i * (n - i) * (i mod 2). Conjectures from Colin Barker, Nov 20 2017: (Start) G.f.: x^2*(1 + x + x^2 + x^3 + 7*x^4 + x^5 + x^6 + x^7 + 2*x^8) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^3). a(n) = a(n-1) + 3*a(n-4) - 3*a(n-5) - 3*a(n-8) + 3*a(n-9) + a(n-12) - a(n-13) for n>13. (End) Conjectures verified by Robert Israel, Dec 05 2017. a(n) = (1/384)*((2-2*(-1)^n)*(1+(-1)^n+6*(-1)^((2*n+3)/4+(-1)^n/4))+32*n+12*n^2*(1+(-1)^n+2*(-1)^((2*n+3)/4+(-1)^n/4))+16*n^3). - Wesley Ivan Hurt, Dec 02 2017 EXAMPLE a(10) = 55; the partitions of 10 into two parts are (9,1), (8,2), (7,3), (6,4), (5,5). Three of these partitions have odd numbers as their smaller parts, namely 1,3,5. Then the sum of the products of the smaller and larger parts of these partitions is 9*1 + 7*3 + 5*5 = 55. MAPLE A295286:=n->add(i*(n-i)*(i mod 2), i=1..floor(n/2)): seq(A295286(n), n=1..100); # Alternate: for j from 0 to 3 do   F[j]:= expand(simplify(eval(sum((2*i-1)*(4*k+j-2*i+1), i=1..k+floor(j/2))), {k=(n-j)/4})) od: seq(F[n mod 4], n=1..100); # Robert Israel, Dec 05 2017 MATHEMATICA Table[Sum[i (n - i) Mod[i, 2], {i, Floor[n/2]}], {n, 80}] CROSSREFS Cf. A295287. Sequence in context: A140128 A167906 A100998 * A127283 A047193 A019137 Adjacent sequences:  A295283 A295284 A295285 * A295287 A295288 A295289 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Nov 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 08:53 EDT 2019. Contains 323441 sequences. (Running on oeis4.)