login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295237
Expansion of e.g.f. csc(x)*(1 - sqrt(1 - 4*sin(x)))/2.
5
1, 1, 4, 29, 320, 4741, 88384, 1988489, 52448000, 1587545161, 54252120064, 2066298252149, 86799115489280, 3986897970744781, 198795278022098944, 10694247962623751009, 617392620634705756160, 38074395493710549747601, 2498063366053169206657024, 173745719989547715852773069
OFFSET
0,3
FORMULA
E.g.f.: 1/(1 - sin(x)/(1 - sin(x)/(1 - sin(x)/(1 - sin(x)/(1 - ...))))), a continued fraction.
a(n) ~ sqrt(2) * 15^(1/4) * n^(n-1) / (exp(n) * (arcsin(1/4))^(n - 1/2)). - Vaclav Kotesovec, Nov 18 2017
MAPLE
a:=series(csc(x)*(1-sqrt(1-4*sin(x)))/2, x=0, 20): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[Csc[x] (1 - Sqrt[1 - 4 Sin[x]])/2, {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-Sin[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 18 2017
STATUS
approved