login
a(n) = sum_{k=0,...,[n/2]} |s(n-k,k)|^3, s = A048994, Stirling numbers of the first kind.
0

%I #6 Apr 03 2021 18:08:28

%S 1,0,1,1,9,243,15156,1853216,393861700,133524487369,67784261131182,

%T 49102947079265422,48868239988727255585,64803779202807835851565,

%U 111657015638972745549794074,244745390650212498564219429909,670332605628298040569504378787338

%N a(n) = sum_{k=0,...,[n/2]} |s(n-k,k)|^3, s = A048994, Stirling numbers of the first kind.

%H Edyta Hetmaniok, Barbara Smoleń, Roman Wituła, <a href="http://ceur-ws.org/Vol-1853/p07.pdf">The Stirling triangles</a>, Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics (SYSTEM 2017), Kaunas, Lithuania, April 28, 2017, p. 35-41.

%t Abs[Table[Sum[StirlingS1[n-k,k]^3,{k,0,Floor[n/2]}],{n,0,20}]] (* _Harvey P. Dale_, Apr 03 2021 *)

%K nonn

%O 0,5

%A _Eric M. Schmidt_, Nov 18 2017