login
A295228
a(n) = sum_{k=0,...,[n/2]} |s(n-k,k)|^3, s = A048994, Stirling numbers of the first kind.
0
1, 0, 1, 1, 9, 243, 15156, 1853216, 393861700, 133524487369, 67784261131182, 49102947079265422, 48868239988727255585, 64803779202807835851565, 111657015638972745549794074, 244745390650212498564219429909, 670332605628298040569504378787338
OFFSET
0,5
LINKS
Edyta Hetmaniok, Barbara Smoleń, Roman Wituła, The Stirling triangles, Proceedings of the Symposium for Young Scientists in Technology, Engineering and Mathematics (SYSTEM 2017), Kaunas, Lithuania, April 28, 2017, p. 35-41.
MATHEMATICA
Abs[Table[Sum[StirlingS1[n-k, k]^3, {k, 0, Floor[n/2]}], {n, 0, 20}]] (* Harvey P. Dale, Apr 03 2021 *)
CROSSREFS
Sequence in context: A285511 A013733 A369533 * A217628 A167005 A112028
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Nov 18 2017
STATUS
approved