login
A295064
Solution of the complementary equation a(n) = 8*a(n-3) + b(n-1), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
3
1, 3, 5, 14, 31, 48, 121, 258, 395, 980, 2077, 3175, 7856, 16633, 25418, 62867, 133084, 203365, 502958, 1064695, 1626944, 4023689, 8517586, 13015579, 32189540, 68140717, 104124662
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences.
The sequence a(n+1)/a(n) appears to have three convergent subsequences, with limits 1.52..., 2.11..., 2.47...
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6
a(3) = 8*a(0) + b(2) = 14
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2;
a[n_] := a[n] = 8 a[n - 3] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295064 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A295053.
Sequence in context: A198785 A222380 A271867 * A052974 A284415 A318227
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 19 2017
STATUS
approved