

A295024


Cubes whose largest digit is 9.


5



729, 2197, 4096, 4913, 6859, 9261, 19683, 21952, 24389, 29791, 35937, 39304, 59319, 68921, 79507, 91125, 97336, 110592, 117649, 185193, 195112, 205379, 226981, 287496, 328509, 357911, 389017, 438976, 493039, 592704, 704969, 729000, 912673, 941192, 970299, 1092727, 1191016
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.


LINKS

Table of n, a(n) for n=1..37.


FORMULA

a(n) = A294999(n)^3.


EXAMPLE

2197 is in the sequence because it is a cube, 2197 = 13^3, and its largest digit is 9.


PROG

(PARI) for(n=1, 150, vecmax(digits(n^3))==8 &&print1(n^3, ", "))


CROSSREFS

Cf. A294999 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295023 (same for digit 3 .. 8), A295019 (same for squares).
Cf. A000578 (the cubes).
Sequence in context: A255112 A255627 A139308 * A167728 A050220 A236334
Adjacent sequences: A295021 A295022 A295023 * A295025 A295026 A295027


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Nov 13 2017


STATUS

approved



