The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294972 Numerators of continued fraction convergents to sqrt(7)/2. 4
 1, 4, 41, 127, 295, 1012, 10415, 32257, 74929, 257044, 2645369, 8193151, 19031671, 65288164, 671913311, 2081028097, 4833969505, 16582936612, 170663335625, 528572943487, 1227809222599, 4212000611284, 43347815335439, 134255446617601, 311858708570641, 1069831572329524, 11010174431865881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The denominators are given in A294973. The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,254,0,0,0,-1). FORMULA From Colin Barker, Nov 19 2017: (Start) G.f.: (1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)). a(n) = 254*a(n-4) - a(n-8) for n > 7. (End) The proof of the g.f. runs like the one given for the denominators in A294973. The recurrence for a(n) is the same but the input is now a(0) = b(0) = 1 and a(-1) = 1, (a(-2) = 0). - Wolfdieter Lang, Nov 19 2017 MATHEMATICA Numerator[Convergents[Sqrt[7]/2, 30]] (* Vaclav Kotesovec, Nov 19 2017 *) PROG (PARI) Vec((1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ Colin Barker, Nov 21 2017 CROSSREFS Cf. A242703, A294973. Sequence in context: A002677 A119527 A074991 * A213823 A296800 A273418 Adjacent sequences:  A294969 A294970 A294971 * A294973 A294974 A294975 KEYWORD nonn,cofr,frac,easy AUTHOR Wolfdieter Lang, Nov 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 02:57 EDT 2020. Contains 337315 sequences. (Running on oeis4.)