login
A294953
Expansion of Product_{k>=1} (1 - k^(2*k)*x^k)^k.
4
1, -1, -32, -2155, -259701, -48496253, -13001952944, -4732375549802, -2246504006429898, -1348407213767476321, -998562531571744073815, -894380298523142455736017, -953030939828900988652689704, -1191547999931410291515116161158
OFFSET
0,3
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = n^(2*n).
LINKS
FORMULA
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294955(k)*a(n-k) for n > 0.
PROG
(PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k^(2*k)*x^k)^k))
CROSSREFS
Column k=2 of A294808.
Sequence in context: A222830 A079202 A294607 * A239402 A085526 A376523
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 12 2017
STATUS
approved