login
A294947
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(-Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.
3
1, 1, -1, 1, -1, -2, 1, -1, -4, -7, 1, -1, -8, -23, -57, 1, -1, -16, -73, -229, -541, 1, -1, -32, -227, -927, -2761, -7126, 1, -1, -64, -697, -3757, -13969, -42615, -108072, 1, -1, -128, -2123, -15207, -70237, -254580, -758499, -1966034
OFFSET
0,6
FORMULA
G.f. of column k: Product_{j>0} (1 - j^j*x^j)^(j^(k-1)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-2, -4, -8, -16, -32, ...
-7, -23, -73, -227, -697, ...
-57, -229, -927, -3757, -15207, ...
-541, -2761, -13969, -70237, -351361, ...
CROSSREFS
Columns k=0..2 give A294948, A292312, A294809.
Rows n=0..1 give A000012, (-1)*A000012.
Sequence in context: A264622 A275017 A141036 * A265232 A011016 A096540
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 11 2017
STATUS
approved