login
A294894
Number of divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.
6
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 3, 2, 4, 1, 6, 1, 6, 2, 2, 1, 9, 1, 2, 4, 6, 1, 5, 1, 4, 2, 5, 1, 10, 1, 2, 3, 4, 1, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 1, 4, 2, 2, 1, 10, 1, 4, 4, 6, 1, 5, 1, 6, 5
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} (1-A283991(d)).
a(n) + A294893(n) = A000005(n).
a(n) = 1 + A294892(n) - A283991(n).
EXAMPLE
For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, so only 1 is counted and a(25)=1.
PROG
(PARI)
ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
A283991(n) = polisirreducible(ps(n));
A294894(n) = sumdiv(n, d, (0==A283991(d)));
CROSSREFS
Cf. also A294884, A294904.
Differs from A033273 for the first time at n=25.
Sequence in context: A194548 A274009 A069157 * A076526 A351417 A226378
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2017
STATUS
approved