login
A294880
Number of divisors of n that are in Perrin sequence, A001608.
3
0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0, 3, 2, 2, 0, 3, 1, 1, 1, 2, 1, 4, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 3, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 3, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 5, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{d|n} A294878(d).
a(n) = A294879(n) + A294878(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -1/5 + Sum_{n>=3} 1/A001608(n) = 1.603595519775230150708... . - Amiram Eldar, Jan 01 2024
EXAMPLE
For n = 22, with divisors [1, 2, 11, 22], both 2 and 22 are in A001608, thus a(22) = 2.
For n = 644, with divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], 2, 7 and 644 are in A001608, thus a(644) = 3.
MATHEMATICA
With[{s = LinearRecurrence[{0, 1, 1}, {3, 2, 5}, 15]}, Table[DivisorSum[n, 1 &, MemberQ[s, #] &], {n, 1, s[[-1]]}]] (* Amiram Eldar, Jan 01 2024 *)
PROG
(PARI)
A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
A294878(n) = { my(k=1, v); while((v=A001608(k))<n, k++); (v==n); };
A294880(n) = sumdiv(n, d, A294878(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2017
STATUS
approved