login
A294875
a(n) = Product_{d|n, d = x^k, with x,k > 1} prime(A052409(d)-1).
7
1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 1, 30, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 6, 2, 1, 1, 1, 210, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 30, 2, 2, 1, 2, 1, 6, 1, 6, 1, 1, 1, 2, 1, 1, 2, 2310, 1, 1, 1, 2, 1, 1, 1, 24, 1, 1, 2, 2, 1, 1, 1, 30, 30, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 210, 1, 2, 2, 8, 1, 1, 1, 6, 1, 1, 1, 24, 1, 1, 1, 30, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
For all i, j:
a(i) = a(j) => A294874(i) = A294874(j) => A046951(i) = A046951(j).
a(i) = a(j) => A061704(i) = A061704(j).
FORMULA
a(n) = Product_{d|n, d>1} A008578(A052409(d)).
a(n) = A064989(A293524(n)).
Other identities. For all n >= 1:
1 + A001222(a(n)) = A091050(n).
PROG
(PARI) A294875(n) = { my(m=1, e); fordiv(n, d, if(d>1, e = ispower(d); if(e>1, m *= prime(e-1)))); m; };
CROSSREFS
Cf. A046951, A061704, A091050 (some of the matched sequences).
Sequence in context: A331562 A257101 A112624 * A293902 A300830 A139329
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2017
STATUS
approved