login
A294869
Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 2, 8, 20, 39, 66, 103, 151, 211, 284, 371, 473, 591, 726, 879, 1051, 1243, 1457, 1694, 1955, 2241, 2553, 2892, 3259, 3655, 4081, 4538, 5027, 5549, 6105, 6696, 7323, 7987, 8689, 9430, 10212, 11036, 11903, 12814, 13770, 14772, 15821, 16918, 18064, 19260
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 1 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A294869 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A294860.
Sequence in context: A025219 A278212 A032767 * A305129 A032633 A294437
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 16 2017
STATUS
approved