login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294860 Solution of the equation a(n) = a(n-2) + b(n-2), where a( ) and b( ) are increasing sequences of positive integers such that every positive integer is in one of them and only one term is in both. 15
1, 2, 4, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 98, 110, 122, 135, 148, 162, 177, 192, 208, 224, 241, 258, 277, 295, 315, 334, 355, 375, 398, 419, 443, 465, 490, 513, 539, 564, 591, 617, 645, 672, 701, 729, 760, 789, 821, 851, 884, 915, 949, 981 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values sequences in the following guide are a(0) = 1, a(1) = 2, b(0) = 3.

A294860: a(n) = a(n-2) + b(n-2); not quite complementary

A022939: a(n) = a(n-2) + b(n-2); offset 1, complementary

A294861: a(n) = a(n-2) + b(n-2) + 1

A294862: a(n) = a(n-2) + b(n-2) + 2

A294863: a(n) = a(n-2) + b(n-2) + 3

A294864: a(n) = a(n-2) + b(n-2) + n

A294865: a(n) = a(n-2) + 2*b(n-2)

A294866: a(n) = 2*a(n-1) - a(n-2) + b(n-1)

A294867: a(n) = 2*a(n-1) - a(n-2) + b(n-1) - 1

A294868: a(n) = 2*a(n-1) - a(n-2) + b(n-1) - 2

A294869: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 1

A294870: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 2

A294871: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 3

A294872: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + n

A022942: a(n) = a(n-2) + b(n-1); offset 1

A295998: a(n) = 2*a(n-2) + b(n-2)

LINKS

Table of n, a(n) for n=0..55.

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, so that a(2) = 4

(b(n)) = (3,4,5,7,8,10,11,12,14,15,...)

MATHEMATICA

mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

a[0] = 1; a[1] = 2; b[0] = 3;

a[n_] := a[n] = a[n - 2] + b[n - 2];

b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

Table[a[n], {n, 0, 18}]  (* A294860 *)

Table[b[n], {n, 0, 10}]

CROSSREFS

Cf. A294861, A294864, A294865.

Sequence in context: A154255 A232739 A006697 * A183920 A079717 A247179

Adjacent sequences:  A294857 A294858 A294859 * A294861 A294862 A294863

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 16 2017

EXTENSIONS

Edited by Clark Kimberling, Dec 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 14:17 EDT 2019. Contains 321431 sequences. (Running on oeis4.)