OFFSET
0,2
COMMENTS
The corresponding denominators are given in A294829.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,3].
The limit of the series is V(5,3) = lim_{n -> oo} V(5,3;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) + (Pi/5)*sqrt(7-4*phi)))/4, with the golden section phi:= (1 + sqrt(5))/2 = A001622. The value is 0.48170177449... given in A294830.
In the Koecher reference v_5(3) = (2/5)*V(5,3) = 0.19268070979833151082... given there by ((1/4)*log(5) - (1/(2*sqrt(5)))*log((1+sqrt(5))/2) - (Pi/10)*sqrt((5 - 2*sqrt(5))/5)).
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
LINKS
Robert Israel, Table of n, a(n) for n = 0..891
Eric Weisstein's World of Mathematics, Digamma Function
FORMULA
EXAMPLE
The rationals V(5,3;n), n >= 0, begin: 1/3, 19/48, 263/624, 815/1872, 95597/215280, 678149/1506960, 7531399/16576560, 18016577/39369330, 259695727/564293730, 4173941423/9028699680, 222039686299/478521083040, 2153029760377/4625703802720, 19428099753313/41631334224480, ...
V(5,3;10^6) = 0.4817015746 to be compared with 0.4817017745 from A294830 with 10 digits.
MAPLE
map(numer, ListTools:-PartialSums([seq(1/(k+1)/(5*k+3), k=0..50)])); # Robert Israel, Nov 17 2017
PROG
(PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 3)))); \\ Michel Marcus, Nov 17 2017
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 16 2017
STATUS
approved