login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294793 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry and swappable colors. 8
0, 0, 1, 0, 13, 874, 1, 235, 51075, 10741819, 2, 3437, 2823766, 2261625725, 1870851589562, 13, 51275, 155495153, 486711524815, 1600136051453135, 5465007068038102643, 50, 742651, 8643289534, 107092397450897, 1405227969932349726, 19188864521773558375127, 269482732023591671431784330, 221, 10741763, 486710971595, 24009547064476683 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.)

REFERENCES

F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

LINKS

Table of n, a(n) for n=1..32.

Marko Riedel et al., Burnside lemma and translational symmetries of the torus.

FORMULA

T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=4. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

CROSSREFS

Cf. A294684, A294685, A294686, A294687, A294791, A294792, A294794, A295197. T(n,1) is A056297.

Sequence in context: A289225 A331341 A123838 * A013539 A201255 A196695

Adjacent sequences:  A294790 A294791 A294792 * A294794 A294795 A294796

KEYWORD

nonn,tabl

AUTHOR

Marko Riedel, Nov 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 04:38 EDT 2020. Contains 336368 sequences. (Running on oeis4.)