login
A294788
Number of twice-factorizations of type (Q,P,Q) and product n.
10
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 13, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 11, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
OFFSET
1,6
COMMENTS
a(n) is the number of ways to choose a product-preserving permutation of a set partition of a factorization of n into distinct factors greater than one.
EXAMPLE
The a(36) = 13 twice-factorizations are: (2)*(3)*(6), (2)*(3*6), (6)*(2*3), (2*3)*(6), (2*6)*(3), (2*3*6), (2)*(18), (2*18), (3)*(12), (3*12), (4)*(9), (4*9), (36).
MATHEMATICA
nn=100;
sfs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sfs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Total[Sum[Times@@Factorial/@Length/@Split[Sort[Times@@@f]], {f, sps[Sort[#]]}]&/@sfs[n]], {n, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 08 2017
STATUS
approved