This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294781 Growth of the Lamplighter group: number of elements in the Lamplighter group Z ≀ Z of length up to n with respect to the standard generating set {a,t}. 1
 1, 5, 17, 53, 153, 421, 1125, 2937, 7537, 19093, 47881, 119133, 294585, 724869, 1776717, 4341425, 10582177, 25743269, 62527553, 151682821, 367594457, 890137893, 2154129717, 5210373929, 12597758737, 30449544885, 73580024633, 177767884973, 429416696185, 1037172672005, 2504846014621 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The group is presented by . LINKS Walter Parry, Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), 751-759. FORMULA G.f.: (1-x)^2 (1+x)^3 (1+x^2) / ((1-2x-x^2)(1-x-x^2-x^3)^2). EXAMPLE a(2)=17, since the elements of length up to 2 are 1, a, a^-1, t, t^-1, a^2, at, at^-1, a^-2, a^-1t, a^-1t^-1, ta, ta^-1, t^2, t^-1a, t^-1a^-1, t^-2. MATHEMATICA CoefficientList[ Series[-((x^2 + 1) (x - 1)^2 (x + 1)^3)/((x^3 + x^2 + x - 1)^2 (x^2 + 2 x - 1)), {x, 0, 27}], x] (* or *) LinearRecurrence[{4, -2, -4, -4, 4, 6, 4, 1}, {1, 5, 17, 53, 153, 421, 1125, 2937}, 28] (* Robert G. Wilson v, Aug 08 2018 *) CROSSREFS Cf. A294683. Partial sums of A294782. Sequence in context: A278464 A186254 A158896 * A110318 A088210 A135344 Adjacent sequences:  A294778 A294779 A294780 * A294782 A294783 A294784 KEYWORD nonn,easy AUTHOR Zoran Sunic, Nov 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:32 EDT 2019. Contains 321406 sequences. (Running on oeis4.)