login
A294778
Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(k-1)/2).
1
1, 0, 0, 1, 0, 3, 1, 6, 3, 11, 12, 18, 29, 33, 69, 67, 138, 141, 275, 306, 516, 656, 972, 1353, 1828, 2712, 3477, 5280, 6654, 10038, 12756, 18789, 24369, 34796, 46167, 63990, 86629, 117189, 160698, 213984, 295092, 389517, 536683, 706590, 968289, 1276310
OFFSET
0,6
FORMULA
a(n) ~ exp(2*Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (16*3^(3/4)) + 3*Zeta(3) / (32*Pi^2)) / (2^(31/16) * 15^(1/8) * n^(5/8)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 08 2017
STATUS
approved