The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294749 Expansion of Product_{k>=1} (1 + x^(2*k - 1))^(k^2). 5
 1, 1, 0, 4, 4, 9, 15, 22, 52, 65, 129, 190, 335, 534, 814, 1399, 2074, 3462, 5135, 8303, 12658, 19562, 30182, 45542, 70620, 105034, 161223, 239532, 362929, 539252, 805320, 1197589, 1769483, 2624604, 3847755, 5681787, 8291848, 12165978, 17696362, 25796820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS In general, if g.f. = Product_{k>=1} (1 + x^(2*k-1))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi*sqrt(2)/3 * (7*c2/15)^(1/4) * n^(3/4) + 3*(c1+c2) * Zeta(3) / (2*Pi^2) * sqrt(15*n/(7*c2)) + (Pi*(4*c0 + 2*c1 + c2) * (15/(7*c2))^(1/4) / (24*sqrt(2)) - 9*(c1+c2)^2 * Zeta(3)^2 * (15/(7*c2))^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*(c1+c2)^3 * Zeta(3)^3 / (49 * c2^2 * Pi^8) - 15*(c1+c2) * (4*c0 + 2*c1 + c2) * Zeta(3) / (112 * c2 * Pi^2)) * (7/15)^(1/8) * 2^((c1+c2)/24 - 9/4) * c2^(1/8) / n^(5/8). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 FORMULA a(n) ~ exp(Pi/3 * (7/15)^(1/4) * sqrt(2) * n^(3/4) + 3*Zeta(3) * sqrt(15*n/7) / (2*Pi^2) + (Pi * (15/7)^(1/4) / (24*sqrt(2)) - 9*Zeta(3)^2 * (15/7)^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*Zeta(3)^3 / (49*Pi^8) - 15*Zeta(3) / (112*Pi^2)) * (7/15)^(1/8) / (2^(53/24) * n^(5/8)). MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1+x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A027998, A263140, A294750, A294755. Sequence in context: A266008 A284628 A262811 * A098359 A319435 A226096 Adjacent sequences:  A294746 A294747 A294748 * A294750 A294751 A294752 KEYWORD nonn AUTHOR Vaclav Kotesovec, Nov 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:42 EST 2020. Contains 338858 sequences. (Running on oeis4.)