login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294749 Expansion of Product_{k>=1} (1 + x^(2*k - 1))^(k^2). 4
1, 1, 0, 4, 4, 9, 15, 22, 52, 65, 129, 190, 335, 534, 814, 1399, 2074, 3462, 5135, 8303, 12658, 19562, 30182, 45542, 70620, 105034, 161223, 239532, 362929, 539252, 805320, 1197589, 1769483, 2624604, 3847755, 5681787, 8291848, 12165978, 17696362, 25796820 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

In general, if g.f. = Product_{k>=1} (1 + x^(2*k-1))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi*sqrt(2)/3 * (7*c2/15)^(1/4) * n^(3/4) + 3*(c1+c2) * Zeta(3) / (2*Pi^2) * sqrt(15*n/(7*c2)) + (Pi*(4*c0 + 2*c1 + c2) * (15/(7*c2))^(1/4) / (24*sqrt(2)) - 9*(c1+c2)^2 * Zeta(3)^2 * (15/(7*c2))^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*(c1+c2)^3 * Zeta(3)^3 / (49 * c2^2 * Pi^8) - 15*(c1+c2) * (4*c0 + 2*c1 + c2) * Zeta(3) / (112 * c2 * Pi^2)) * (7/15)^(1/8) * 2^((c1+c2)/24 - 9/4) * c2^(1/8) / n^(5/8).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..5000

FORMULA

a(n) ~ exp(Pi/3 * (7/15)^(1/4) * sqrt(2) * n^(3/4) + 3*Zeta(3) * sqrt(15*n/7) / (2*Pi^2) + (Pi * (15/7)^(1/4) / (24*sqrt(2)) - 9*Zeta(3)^2 * (15/7)^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*Zeta(3)^3 / (49*Pi^8) - 15*Zeta(3) / (112*Pi^2)) * (7/15)^(1/8) / (2^(53/24) * n^(5/8)).

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1+x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A027998, A263140, A294750, A294755.

Sequence in context: A266008 A284628 A262811 * A098359 A319435 A226096

Adjacent sequences:  A294746 A294747 A294748 * A294750 A294751 A294752

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Nov 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:25 EDT 2018. Contains 316281 sequences. (Running on oeis4.)