OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n=-oo..+oo} (x - x^(n+1))^n = 0.
Compare g.f. to: Sum_{n=-oo..+oo, n<>0} x^n/(1 - x^n) = 0, ignoring constant terms.
Limit a(n+1)/a(n) = -(sqrt(5) + 1)/2.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..300
FORMULA
a(n) ~ (-1)^n * (1 + sqrt(5))^(n+1) / 2^(n+2). - Vaclav Kotesovec, Nov 08 2017
EXAMPLE
G.f.: A(x) = 1 - x + 2*x^2 - 3*x^3 + 7*x^4 - 11*x^5 + 17*x^6 - 21*x^7 + 35*x^8 - 67*x^9 + 125*x^10 - 179*x^11 + 246*x^12 - 384*x^13 + 715*x^14 - 1199*x^15 + 1871*x^16 - 2850*x^17 + 4593*x^18 - 7589*x^19 + 12811*x^20 - 20366*x^21 + 31545*x^22 - 50483*x^23 + 84597*x^24 - 138964*x^25 +...
PROG
(PARI) {a(n) = my(A); A = sum(m=-n-1, n+1, if(m==0, 1, (x-x^m)^m/(1 - (x-x^m +x*O(x^n))^m ))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 07 2017
STATUS
approved